MessagePack: The Missing Serializer
Last updated November 21, 2011MessagePack, the efficient, blazing, fast serializer is the core of our technology.
The best way to describe MessagePack is “JSON on steroids”. It supports an almost identical set of data types as JSON —Nil, Boolean, Integer, Float, String, Array, and Associative Array— but runs much faster and requires a fraction of space.
The Gory Details
MessagePack is fast and space-efficient for a few reasons.
- Stream deserializer.
MessagePack’s protocol is designed so that one can start deserializing the buffered data before all the data is received. The user simply appends new data to the buffer and start deserializing them right away. The real benefit of stream deserializer is pipelining; by overlapping deserialization and data reception, one can cut down the total time drastically.
- “zero-copy” serialize/deserializer.
MessagePack’s dramatic speedup comes from “zero-copy” serialization (currently implemented only in the C++ and D library). As the name suggests, “zero-copy” serialization copies no data. Well, almost.
Instead of the entire data, the library keeps track of just enough metadata to recover the object for read operations. “zero-copy” deserialization works similarly but the other way around. The absence of copy operations speeds up serialization/deserialization, especially for large data.
- Being smart about serialization schema.
Like many other efficient messaging protocols, MessagePack is a binary protocol. Furthermore, it is optimized to store common data types compactly. Here is a quick comparison with JSON.
- Community, Community, Community.
Since the inception of the MessagePack project, we have had the fortune of having experts implement the library for each programming language. Instead of asking them to write a simple wrapper around the core C implementation, we encouraged them to go as low-level and hardcore as possible to squeeze in as many implementation-specific optimizations.
For example, the Ruby library has “zero-copy” deserialization implemented. This blog post shows how the Python’s implementation of MessagePack runs circles around every other serialization library. The community is active and growing, and the performance of each library continues to improve.
And This is Only the Beginning
Treasure Data eliminates obstacles for analyzing Big Data. All of your time should go into data analysis, not management. We build powerful tools to help you do that.
We are always looking for people to join our team. If you know anyone that is a good fit (including yourself!), check out our current openings.
You can read more about MessagePack at: